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Abstract

If the dynamics of a physical system are invariant under certain transformations, the system has
a symmetry. Symmetries play an important role in physics, since they allow us to simplify a
problem and make qualitative statements and quantitative predictions. In this thesis continuous
symmetries described by Lie algebras are investigated, in particular the so-called so(5) Lie
algebra. When describing physical systems with Lie algebras it is vital to reduce tensor products
of irreducible representations into sums of such representations. The graphical tensor product
reduction scheme of J. P. Antoine and D. Speiser provides an algorithm to calculate these sums,
without engaging in long and tedious calculations. The goal of this thesis is to work out this
particular tensor product reduction scheme and then implement it in a Java-program.
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1 Introduction

Sophus Lie (∗1842 − †1899) was a Norwegian mathematician. He largely created the theory of
continuous symmetry and applied it to the study of geometry. Lie's greatest achievement was
the discovery that continuous transformation groups (now called Lie groups, after him) could
be better understood by "linearizing" them and studying the corresponding tangential spaces
which are spanned by so-called generators. The generators are subject to a linearized version of
the group law and have the structure of what is today called a Lie algebra.
The Lie group SO(n) which describes rotation in n-dimensional space, consists of all real, or-
thogonal n× n matrices O, with detO = 1, and has a Lie algebra so(n). The Lie group SU(n)
consists of all complex, unitary n×n matrices U with determinant 1. The well-known Lie algebra
su(2) describes, for example, quantum mechanical angular momentum and results from the Lie
group SU(2).
The Lie group SO(5) has an underlying Lie algebra so(5) which can be used to describe certain
symmetries occurring in nature. This particular Lie algebra has been studied in attempts to
unify the order parameters of antiferromagnetism and high-temperature superconductivity in
condensed matter physics [1].
The Lie algebras so(5) ' sp(2), g(2), su(3) and so(4) are so-called rank 2 Lie algebras, where
so(4) is just the direct sum of two rank 1 su(2) Lie algebras: so(4) = su(2)⊕ su(2).
The Lie algebras g(2) and su(3) also play an important role in physics. g(2) has been used in
the context of string theory and supersymmetry [2]. The Lie algebra su(3), on the other hand,
has been used to describe �avour symmetries of up, down, and strange quarks (su(3)f ) as well
as describing the color degree of freedom by which quarks couple to the gluon �eld (su(3)c).
As one can see, rank 2 Lie algebras play an important role in physics. In all applications when
working with Lie algebras it is important to reduce tensor products of irreducible representations
into sums of such representations.
Consider, for example, the simple rank 1 Lie algebra su(2). When working with a coupled system
of a spin 2 and a spin 1

2 particle, it is natural to "reduce" this product using the coupling rules:

spin 2⊗ spin
1

2
= spin

5

2
⊕ spin

3

2
(1)

Since every particle with spin S has {2S + 1} states, we can write this equation in terms of the
dimension which denotes the number of states:

{5} ⊗ {2} = {6} ⊕ {4} (2)

It is worth mentioning that the expression {2S + 1} for su(2) describes a so-called (2S + 1)
dimensional multiplet (or weight diagram) which can be visualized graphically. Since su(2) is a
rank 1 Lie algebra, the multiplet can be visualized one-dimensionally. For instance the multiplet
of a spin 2 particle ({5}) can be presented as:

−2 −1 0 1 2

Figure 1: Multiplet of a spin 2 particle. The numbers denote the z-component of the spin.

Young tableaux provide a useful tool in order to reduce tensor products. However, in 1964
J. P. Antoine and D. Speiser described a graphical, much more economical method to reduce
tensor products of rank 2 Lie algebras [3, 4]. Based on the fact that the multiplets of rank 2 Lie
algebras are two-dimensional, they constructed a two-dimensional "landscape", which contains
all the irreducible representations of a given rank 2 Lie algebra. Given two multiplets one wants
to couple, the �rst one is placed into this landscape of irreducible representations, centered at
the second multiplet. Taking into account the parity of the various sectors of the landscape
and the multiplicities of the �rst multiplet one can easily calculate even higher-dimensional
tensor products. In so(5) one can couple for example a 10000-dimensional multiplet with a
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10-dimensional one. Using the graphical method described by J. P. Antoine and D. Speiser the
calculations are short and could even be done by hand (given a su�ciently large landscape):

{10000} ⊗ {10} ={14080} ⊕ {12320} ⊕ {11340} ⊕ {10240} ⊕ 2{10000}
⊕ {8960} ⊕ {8360} ⊕ {7980} ⊕ {6720} (3)

1.1 Structure and aim of this thesis

This thesis focuses mainly on Lie algebras, representations and the reduction of tensor products.
In section 2 we provide a brief introduction to group theory, we give formal de�nitions and
introduce the notations used throughout this thesis. We continue by applying the group theory
to so(5) and highlight the di�erences between this Lie algebra and other Lie algebras like su(2) or
so(4). In section 4 we explain the idea behind coupling tensor products and describe the graphical
tensor product reduction scheme. Section 5 is all about the graphical tensor product reduction
scheme, which was described by J. P. Antoine and D. Speiser in 1964. The practical part of this
thesis, namely the implementation of the previously mentioned algorithm, is described in section
6.
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2 Group theory

Symmetries of a physical system are described by a mathematical structure known as a group.
In the following a few essential facts about groups, Lie algebras, and representations will be
given. Throughout this thesis we do not distinguish between contravariant and covariant vectors
and follow the Einstein summation convention. Lie groups are denoted by capital letters, the
corresponding Lie algebras are denoted by small letters, e.g., the Lie group SO(5) has the Lie
algebra so(5). Furthermore we set ~ = 1.

2.1 Groups

A group consists of a set G and an operation (denoted by ∗) on G with the following properties:

(G1) ∗ : G×G→ G; (a, b) 7→ ∗(a, b) ∀a, b ∈ G

(G2) (a ∗ b) ∗ c = a ∗ (b ∗ c) ∀a, b, c ∈ G

(G3) ∃e ∈ G such that ∀a ∈ G : a ∗ e = e ∗ a = a

(G4) ∀a ∈ G ∃a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e

If for all a, a′ ∈ G it holds that: a ∗ a′ = a′ ∗ a then the group is called Abelian.
A group is called continuous if its group elements are functions of one or several continuous
parameters, for example G = {a, b, c, d, · · · } = {a(t), b(t), c(t), d(t)}1.
If a group is continuous we need to impose some more properties on the group structure: Let
a ∈ G and t1, t2, t3, t4 continuous parameters then

a(t1) ∗ a(t2) = a(t3), =⇒ t3 = f(t1, t2),

a(t1)−1 = a(t4), =⇒ t4 = f̂(t1),

where f and f̂ are continuous functions. If the functions f and f̂ are analytic the group is called
a Lie group.
All these conditions assure that a Lie group has the geometrical structure of a di�erential man-
ifold2. This leads to the fact that the properties of a Lie group can be understood by ex-
amining the immediate vicinity of one particular point on the manifold. Conventionally the
chosen point is the identity element of the manifold. Elements of the corresponding Lie al-
gebra can be obtained by determing the vectors lying in the tangent space at the identity.
The examples which are the most common in physics are the in�nite families of matrix groups:
GL(n), SL(n), O(n), SO(n), U(n), SU(n), and Sp(n), together with the family of �ve exceptional
Lie Groups G(2), F (4), E(6), E(7), and E(8). Before considering an important example, namely
the Lie Group SU(2), we want to give some formal de�nitions for the families of matrix groups:

Mat(n,F) = {set of n× n-matrices with entries in F, where F is a �eld}
GL(n,C) = {M ∈Mat(n,C)|det(M) 6= 0}
SL(n,C) = {M ∈Mat(n,C)|det(M) = 1} ⊂ GL(n,C)

O(n,R) = {M ∈Mat(n,R)|MMT = MTM = 1}
SO(n,R) = SL(n,C) ∩O(n,R)

U(n,C) = {M ∈Mat(n,C)|MM† = M†M = 1}
SU(n,C) = SL(n,C) ∩ U(n,C)

Sp(2n,C) = {M ∈Mat(2n,C)|MTAM = A}

such that A =

(
0 −1n×n

1n×n 0

)
1A group depending on r di�erent parameters is called an r-parameter group.
2A Di�erential Manifold is a topological manifold with a global di�erential structure.
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2.1.1 The Lie Group SU(2)

In order to make the transition from Lie groups to Lie algebras, we take a closer look at SU(2)
which is used to describe spatial rotations

SU(2) = {U ∈ GL(2;C)|UU† = U†U = 1|det(U) = 1}.

Let U ∈ SU(2), then due to the restriction UU† = U†U = 1, we can write U as

U =

(
u0 + iu3 u2 + iu1
−u2 + iu1 u0 − iu3

)
, ui ∈ R.

The second restriction yields
u20 + u21 + u22 + u23 = 1. (4)

which means that there is a bijective correspondence between SU(2) and S3, the three-dimensional
sphere embedded in R4. Therefore we conclude that the group manifold of SU(2) is S3. In order
to determine some elements of the corresponding Lie algebra su(2) we consider a matrix U near
the identity3:

U = 1+ iεA. (5)

Using

det(U) = 1 + iεtr(A) +O(ε2)
!
= 1,

UU† = 1+ iε(A−A†) +O(ε2)
!
= 1.

We conclude that the Lie algebra su(2) can be described in terms of Hermitian, traceless 2×2-
matrices. One can easily verify that the well-known Pauli matrices span su(2) and are therefore
known as the generators of the Lie algebra su(2).

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (6)

2.2 Lie algebras

As already mentioned, the vectors lying in the tangent space at the identity element make up
the Lie algebra of the group. Computations in the Lie algebra are often easier than those in the
group and provide much of the same information.
A Lie algebra consists of a vector space g and an inner product (Lie bracket)

[., .] : g × g → g, (7)

which has the following properties for all λ, µ, ε, ν ∈ C and Zi ∈ g:

(L1) Bi-linearity:
[λZi + µZj , εZk + νZl] = λε[Zi, Zk] + λν[Zi, Zl] + µε[Zj , Zk] + µν[Zj , Zl]

(L2) Anti-symmetry [Zi, Zj ] = −[Zj , Zi]

(L3) Jacobi-Identity: [Zi, [Zj , Zk]] + [Zk, [Zi, Zj ]] + [Zj , [Zk, Zi]] = 0

A Lie-Algebra g is spanned by a basis which consists of a set of Hermitian generators Xα, i.e,
Xα = (Xα)†. The index α runs from 1, . . . , ng, where ng denotes the dimension of the algebra.
Any Z ∈ g can be written as a real linear combination of generators: Z = ωaXa, ωα ∈ R. A Lie
algebra is speci�ed by its structure constants

[Xa, Xb] = ifabcX
c, fabc ∈ R, (8)

3The factor i is chosen conventionally in physics. As a result we get Hermitian generators.
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such that for Z1 = ωa1X
a, Z2 = ωa2X

a the Lie bracket reads

[Z1, Z2] = ωa1ω
b
2[Xa, Xb] = ωa1ω

b
2ifabcX

c. (9)

The Lie algebra su(2) with its corresponding structure constants is given by

Si =
1

2
σi, [Si, Sj ] = iεijkSk. (10)

A subalgebra is a vector space g̃ ⊂ g which is closed under the Lie bracket

[Xi, Xj ] ∈ g̃, ∀Xi, Xj ∈ g̃. (11)

An ideal g̃ ⊂ g is a subalgebra which is closed and "absorbing" which means

[Xi, Xj ] ∈ g̃, ∀Xi ∈ g̃, ∀Xj ∈ g. (12)

The center is an important ideal and consists of all generators in g that commute among them-
selves and with all other generators in g. It is strictly de�ned as

Z[g] = {Z ∈ g|[Z, g] = 0}. (13)

An Abelian subalgebra Λ is an algebra such that

[Xi, Xj ] = 0, ∀Xi, Xj ∈ Λ ⊂ g. (14)

If an algebra does not have any non-trivial ideals it is called simple and semi-simple if it has no
Abelian ideals. Note that a semi-simple algebra may contain a non-Abelian ideal.
We call g a direct sum, if g1, g2 ⊂ g are two commuting algebras satisfying:

[Xa, Xb] = ifabcX
c ∈ g1, ∀Xa, Xb ∈ g1,

[Km,Kn] = ilmnoK
o ∈ g2, ∀Km,Kn ∈ g2, (15)

[X,K] = 0, ∀X ∈ g1 , ∀K ∈ g2.

The commuting property is denoted by g1 ∩ g2 = ∅, the direct sum by

g = g1 ⊕ g2. (16)

2.3 Cartan-Weyl basis

Given a Lie algebra with its basis {X1, X2, · · · , Xng} we can always transform it into the stan-
dard Cartan-Weyl form by a change of basis. This Cartan-Weyl basis is useful since it allows
us to describe a Lie algebra g in terms of ladder and weight operators. Here we want to give a
quick guide on how to construct the Cartan-Weyl basis. First we need to �nd the maximal set
of commuting Hermitian generators Hi, i ∈ {1, · · · , r}, where r is the rank of the algebra

[Hi, Hj ] = 0, ∀i, j ∈ {1, · · · , r}.

This set of generators is called the Cartan subalgebra h. The generators of this subalgebra can
be diagonalized simultaneously and are the so-called weight operators. The remaining generators
Eα are chosen as linear combinations of the Xi's such that they satisfy the following eigenvalue
equation

[Hi, Eα] = αiEα, ∀i ∈ {1, · · · , r}. (17)

The generator Eα is called a ladder operator, and α = (α1, · · ·αr) is known as a root. We can
see that taking the Hermitian conjugate of equation (17) implies that (−α) is necessarily a root
whenever α is a root

E−α = (Eα)†. (18)

Here we have already given a very general de�nition of the Cartan-Weyl basis. The concepts we
are going to use throughout this thesis are the ones of the Cartan subalgebra and the already
mentioned ladder and weight operators.
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2.3.1 Cartan-Weyl basis for su(2)

Consider again the Lie algebra su(2). Going into the Cartan-Weyl form means

{S1, S2, S3} → {S+, S−, S3}, (19)

with: S+ = S1 + iS2, S− = S1 − iS2, such that the new commutation relations read

[S±, S∓] = ±2Sz, [S3, S±] = ±S±. (20)

In this basis we can see that the ladder operators S± can be interpreted as movements between
the states of a multiplet. Consider a state |mS〉 in an arbitrary multiplet {2S + 1}, such that
mS ∈ {−S + 1, · · · , S − 1}. Then the ladder operators transform the eigenstates such that

S+ |mS〉 ∼ |mS + 1〉 , S− |mS〉 ∼ |mS − 1〉 . (21)

The weight operator, on the other hand, gives the eigenvalue (or "weight") of a given state

S3 |mS〉 = mS |mS〉 . (22)

Graphically one can represent the actions of the operators like in �gure 2:

−S −S + 1 · · · mS − 1 mS mS + 1
· · · S − 1 S

S3 S+S−

Figure 2: su(2)-multiplet with S+, S−, S3.

This concept of representing ladder operators graphically generalizes even to the level of so(5).

2.4 Representation

A representation of a Lie algebra means that we can associate to every Xα ∈ g a square
matrix X̃α, such that the set of matrices obey the same algebraic relations as the fundamental
generators, i.e.,

ωiXi + ωjXj → ωiX̃i + ωjX̃j , (23)

[Xi, Xj ] = ifijkX
k → [X̃i, X̃j ] = ifijkX̃

k. (24)

A representation is said to be irreducible if the matrices representing the elements of a given Lie
algebra g cannot all be brought in a block diagonal form by a change of basis.
There are several ways of representing generators in terms of matrices due to the fact that the
only given restriction is to satisfy the commutation relations. We have already seen an example
of a representation:
The Pauli matrices are the generators of the spinor representation of su(2). The spinor repre-
sentation is the fundamental representation in terms of complex 2 × 2-matrices, for an object
with quantum numbers {− 1

2 ,
1
2}. For the Lie algebra su(2) the spinor representation can be

obtained by writing a U ∈ SU(2) in�nitesimally close to the unit element (see equation (5)).
An n-dimensional vector representation arises naturally from the corresponding Lie Group SO(n)
by writing a group member in�nitesimally close to the identity: O = 1 + iεA. As a result the
matrices are all traceless, Hermitian and purely imaginary. This representation is quite use-
ful since it gives a direct relation between the Lie Algebra and its corresponding Lie Group.
One can associate an arbitrary element H = ωαX̃α of the Lie algebra, written in the vector
representation, with its corresponding counterpart in the Lie group by the relation

O = exp(iH) = exp(iωαX̃α). (25)
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The adjoint representation is an ng-dimensional representation which encodes all the commuta-
tion relations between the generators. The adjoint representation is de�ned as

ad(Xα)Xβ = [Xα, Xβ ] ⇔ (X̃α)βγ = −ifαβγ . (26)

Since working with the adjoint representation can be quite tedious for high-dimensional Lie
algebras4 it won't come into play in this thesis.
We complete our discussion by mentioning once again, that the fundamental structure of a given
Lie algebra is encoded in its commutation relations. Representations provide a useful tool to
describe the physics of the algebra or to unlock the mathematical behaviour of the corresponding
group.

2.5 Comment on multiplets

Up to now we often used the notion "multiplet" without specifying what it is exactly. Here we
want to catch up on this.
We start with a given symmetry group, its underlying algebra, and the set of operators in the
Cartan-Weyl form which belong to the algebra. Consider now an invariant subspace of the
whole Hilbert space consisting of all states |Ψi〉. Being an invariant subspace with respect to
the given symmetry group means that all states reproduce themselves by acting with its ladder
operators. One can also say that the operators transform all states of the invariant subspace
among themselves.
A multiplet is an irreducible invariant subspace, i.e., a subspace which does not contain any
other invariant subspace. In order to specify this and the idea of representations we give two
examples: a spin one-half fermion and a spin one boson whose spin-properties are described by
su(2). A spin one-half fermion can have two possible states: |ms〉 = | 12 〉 or |ms〉 = |− 1

2 〉. A
possible representation is the 2-dimensional spinor representation in the Cartan-Weyl form:

S+ = S1 + iS2 =

(
0 1
0 0

)
S− = S1 − iS2 =

(
0 0
1 0

)
S3 =

1

2

(
1 0
0 −1

)
(27)

This representation yields the following multiplet and vice versa:

|− 1
2
〉 | 1

2
〉

{2}

Figure 3: Two dimensional multiplet {2}.

Analogously, for a spin one boson one �nds the following 3×3-representation to the 3-dimensional
multiplet:

S+ =

0
√

2 0

0 0
√

2
0 0 0

 S− =

 0 0 0√
2 0 0

0
√

2 0

 S3 =

1 0 0
0 0 0
0 0 −1

 (28)

|−1〉 |0〉 |1〉

{3}.

Figure 4: Three dimensional multiplet {3}.

We conclude that we can associate a D-dimensional multiplet {D} with every set of D × D-
matrices obeying the commutation relations. This relation also holds true the other way around.

4for example the adjoint representation for so(5) is 10-dimensional.
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Since there is a bijective correspondence between representations and multiplets we do not
strictly distinguish between those two objects. Generally, when talking about a representation
we mean a D ×D-matrix, talking about a multiplet we mean a graphical object as in �gure 3
or �gure 4.

2.6 Trivial and non-trivial duality

In the case of su(2) we have two di�erent types of multiplets: Those with trivial duality meaning
that there is a state belonging to the eigenvalue |ms〉 = |0〉 and those with non-trivial duality
meaning that there is no state |0〉. Trivial examples are the multiplets of a spin one-half particle
{2} and a spin one particle {3} (see �gure 3 and �gure 4).
We will see later on that this concept also works for so(5)-multiplets. Examples of multiplets
with non-trivial duality are given by the 4-dimensional spinor representation {4} or (1, 1) = {16}
(see �gure 9). Some multiplets with trivial duality are given by the �ve dimensional vector
representation {5} or the adjoint representation {10} (see �gure 10).

2.7 The Lie Algebra so(4)

Since we will use so(4) ⊂ so(5) we want to determine some interesting facts about the rank 2 Lie
algebra so(4). First of all, by calculating the generators in the vector representation, starting
from the Lie Group SO(4) yields the following possible set of generators

A1 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 , A2 =


0 0 i 0
0 0 0 0
−i 0 0 0
0 0 0 0

 , A3 =


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 ,

B1 =


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

 , B2 =


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

 , B3 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 ,

following the commutation relations:

[Ai, Aj ] = iεijkA
k, [Ai, Bj ] = iεijkB

k, [Bi, Bj ] = iεijkA
k.

By a change of basis such that

Xi =
1

2
(Ai +Bi), Yi =

1

2
(Ai −Bi),

one obtains

[Xi, Xj ] = iεijkXk, [Xi, Yj ] = 0, [Yi, Yj ] = iεijkYk. (29)

In this new form one can see that so(4) can be decomposed into a direct sum of two su(2)
subalgebras

so(4) = su(2)x ⊕ su(2)y. (30)

We conclude that the semi-simple Lie algebra so(4) is the direct sum of the two simple Lie alge-
bras su(2). One can think of an su(2) algebra "facing in the x-direction" and another one "facing
in the y-direction", acting independently of each other. As a result of this decomposition, so(4)
has two 2-dimensional spinor representations, but also a 4-dimensional vector representation:
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2

1
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− 1
2

1
2

{2}x = {2, 1} {2}y = {1, 2}
|− 1

2
| − 1

2
〉

|− 1
2
| 1
2
〉

| 1
2
| − 1

2
〉

| 1
2
| 1
2
〉

{4} = {2, 2}

Figure 5: Spinor and vector representations of so(4).

2.8 Universal covering group

Using Lie algebras we reach a deeper understanding about the local structure of a Lie group,
namely by considering the tangential space near the unit element. The local structure can be
the same for di�erent groups, which have globally di�erent manifolds. Therefore any Lie algebra
has exactly one Lie group which provides information about the global structure, the so-called
covering group. The covering groups for the Lie algebras SO(n) are called Spin-groups: Spin(n).
For instance, one can easily show that the Lie algebras so(3) and su(2) are isomorphic5 to each
other, i.e., their corresponding Lie groups SO(3) and SU(2) look the same in an in�nitesimal
vicinity of the unit element. Although the Lie algebras so(3) and su(2) are isomorphic to
each other, their corresponding Lie groups SO(3) and SU(2) are not. Considering the center
(equation (13)) of both Lie groups one can easily see that no isomorphism can be built between
them. The center of SU(2) is Z(2) = {1,−1} and the center of SO(3) is just {1}, which shows
profound di�erences in the group structure. Nevertheless SU(2) and SO(3) are closely related.
The adjoint representation of SO(3) is related to the spinor representation by

fab : SU(2)→ SO(3),

U 7→ f(U)ab = Oab =
1

2
tr(UσaU†σb), ∀a, b ∈ {1, 2, 3}. (31)

The unit element of SU(2) is mapped to

Oab =
1

2
tr(σaσb) = δab,

and the inverse U† is mapped to

1

2
tr(U†σaUσb) =

1

2
tr(UσbU†σa) = Oba = OTab,

where we used the cyclic property of the trace. The mapping f is not one-to-one, since both U and
−U are both mapped to the same group element O ∈ SO(3). By straightforward calculations
one can see that the kernel of the map f is Z(2), the center of SU(2). Using isomorphism
theorems for groups one obtains that

SO(3) ' SU(2)/Z(2) ' S3/Z(2). (32)

We conclude that the group manifold of SO(3) is the sphere S3 where all anti-podal points are
identi�ed with each other. Hence SU(2) covers SO(3) 2 times, i.e., the covering group of SO(3)
is Spin(3) = SU(2).
The center of SO(4) is {1,−1} and its universal covering group can be shown to be: Spin(4) =
SU(2) ⊗ SU(2), which has center Z(2) ⊗ Z(2). The Lie group SO(5) has center {1} but its
covering group Spin(5) = Sp(2) has center Z(2).
Universal covering groups allow us to generalize the concept of trivial and non-trivial duality

5Isomorphisms are going to be denoted with ', e.g., so(3) ' su(2).
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depending on the center of the universal covering group.
For instance in the case of so(3) ' su(2) and so(5) ' sp(2) the universal covering groups
Spin(3) = SU(2) and Spin(5) = Sp(2) have center Z(2). As a result multiplets can be divided
into those with trivial and those with non-trivial duality (see subsection 2.6). Due to this fact
also the landscape, we will encounter latter on, can be built using two sublattices (see �gure 14
and �gure 16).
The center of Spin(4) = SU(2)⊗ SU(2) is Z(2)⊗ Z(2), consequently multiplets can be divided
with respect to the su(2)x and the su(2)y duality. There are multiplets which have non-trivial
duality with respect to both su(2) subalgebras (for example, the vector representation of so(4),
see �gure 5), multiplets which have trivial duality with respect to su(2)x but non-trivial duality
with respect to su(2)y and so on, such that we �nally obtain 4 di�erent types of multiplets. As
in the case of su(2) and so(5) this also has an e�ect on the landscape of so(4): It is built by 4
sublattices, denoted by di�erent colors in �gure 15. Exact mathematical explanations referred
to this subject can be found in [5].
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3 Group theory of so(5)

The real-valued 5 × 5 orthogonal matrices O with determinant 1 obey OOT = OTO = 1 and
form the Lie group SO(5) under matrix multiplication. Imposing these conditions one concludes
that a general O ∈ SO(5) has 10 free parameters, therefore SO(5) is 10-dimensional6 and so is
its Lie algebra so(5). One can determine the generators in the vector representation using the
linearization method by writing an element in�nitesimally close to the unit element: O = 1+iεA.
Similar to so(4), the set of generators in the vector representation consists of all purely imaginary,
Hermitian 5 × 5-matrices with trace 0. However, instead of using the vector representation,
mathematics has shown us that there exists a 4-dimensional spinor representation for so(5).
In the spinor representation we can build the matrices we need as a tensor product of Pauli
matrices. This representation fully takes into account that so(5) contains two su(2) subalgebras:
su(2)⊕ su(2) = so(4) ⊂ so(5).

1

1

1

1

Figure 6: (1,0) = {4} in so(5).

With the 4-dimensional spinor representation we can describe the 4-dimensional multiplet {4}
given in �gure 6, where the numbers denote the multiplicities, i.e., the number of states associated
with each single point.

3.1 Spinor representation

Here we derive the 4-dimensional spinor representation for so(5). Imposing the representation
to be traceless and Hermitian, an arbitrary generator M in this representation space can be
written as:

M =


a11 a12 + ib12 a13 + ib13 a14 + ib14
× a22 a23 + ib23 a24 + ib24
× × a33 a34 + ib34
× × × ×

 . (33)

All the matrix entries denoted by a "×" are determined due to Hermiticity and tracelessness.
We conclude that the representation space is 15-dimensional. The task is now to �nd 10 linearly
independent matrices which are closed under the bracket operation and respect the underlying
su(2)⊕ su(2)-symmetries. Starting with the latter condition one constructs the following 4× 4-
matrices using tensor products of the Pauli matrices

X1 =
1

2

(
σx 0

0 0

)
, X2 =

1

2

(
σy 0

0 0

)
, X3 =

1

2

(
σz 0

0 0

)
, (34)

Y 1 =
1

2

(
0 0

0 σx

)
, Y 2 =

1

2

(
0 0

0 σy

)
, Y 3 =

1

2

(
0 0

0 σz

)
. (35)

Here 0 is the 2× 2 zero-matrix. These matrices yield the following commutation relations:

[Xi, Xj ] = iεijkX
k, [Xi, Y j ] = 0, [Y i, Y j ] = iεijkY

k. (36)

Comparing this result with equation (29) we see that we have found a possible representation for
the multiplet {4} in so(4) (see �gure 5). In order to expand this into so(5), we use the following

6A general Lie algebra SO(n) has dimension n(n− 1)/2.
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matrices:

K1 =
1

2

(
0 iσx
−iσx 0

)
K2 =

1

2

(
0 iσy
−iσy 0

)
(37)

K3 =
1

2

(
0 iσz
−iσz 0

)
K4 =

1

2

(
0 1

1 0

)
(38)

(39)

Finally we obtain a set of generators which form a basis:

{X1, X2, X3, Y 1, Y 2, Y 3,K1,K2,K3,K4} (40)

The remaining commutation relations are listed in appendix 8.1.

3.2 Cartan-Weyl basis

Given a Lie algebra and its commutation relations it is very useful to perform a change of basis
such that the Lie algebra can be described in terms of ladder and weight operators. This new
basis is called the Cartan-Weyl basis (see subsection 2.3).
Let us introduce new ladder operators:

X± = X1 ± iX2, Y± = Y 1 ± iY 2,

U± = K2 ∓ iK1, V± = K4 ∓ iK3.

The set of generators is now given by {X+, X−, X3, Y+, Y−, Y3, U+, U−, V+, V−}, such that

X+ = (X−)†, Y+ = (Y−)†, U+ = (U−)†, V+ = (V−)†. (41)

Although we already have a set of ladder and weight operators, we de�ne two new objects which
will help us to reach a deeper understanding of so(5),

U3 := X3 + Y3, V3 := X3 − Y3. (42)
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Since we will work with the resulting commutation relations, they are listed here:

[X±, X∓] = ±2X3, [Y±, Y∓] = ±2Y3,

[X3, X±] = ±X±, [Y3, Y±] = ±Y±,

[X+, U+] = 0, [X−, U+] = V−, [X3, U+] =
1

2
U+,

[X+, U−] = −V+, [X−, U−] = 0, [X3, U−] = −1

2
U−,

[X+, V+] = 0, [X−, V+] = −U−, [X3, V+] =
1

2
V+,

[X+, V−] = U+, [X−, V−] = 0, [X3, V−] = −1

2
V−,

[Y+, U+] = 0, [Y−, U+] = −V+, [Y3, U+] =
1

2
U+,

[Y+, U−] = V−, [Y−, U−] = 0, [Y3, U−] = −1

2
U−,

[Y+, V+] = −U+, [Y−, V+] = 0, [Y3, V+] = −1

2
V+,

[Y+, V−] = 0, [Y−, V−] = U−, [Y3, V−] =
1

2
V−,

[U+, U−] = 2(X3 + Y3) =: 2U3, [U+, V+] = 2X+, [U+, V−] = −2Y+,

[V+, V−] = 2(X3 − Y3) =: 2V3, [U−, V−] = −2X−, [U−, V+] = 2Y−,

[U3, U±] = ±U±, [V3, Y±] = ±V±.

These commutation relations will be important in order to understand the actions of every oper-
ator. We complete our discussion by mentioning once again that with these commutation rela-
tions we have completely characterized so(5). We derived them by considering the 4-dimensional
spinor representation, but they are also valid for higher-dimensional representations.
The commutation relations for so(5) in the Cartan-Weyl basis imply that we have two weight
operators: X3 and Y3. So, by de�nition, so(5) is a rank 2 Lie algebra. As a result multiplets in
so(5) can be visualized in a 2-dimensional plane (as we did in �gure 6).

3.3 Action of the operators

In the case of su(2) we could transform the basis of generators into a set of ladder and weight
operators. There it was easy to see how these operators act on a state |Ψ〉 = |mS〉. However for
so(5), since we are talking about a rank 2 Lie algebra, we need to work a bit more:
At this point we have a 10-dimensional basis, which obeys the commutation relations given in
section 3.2. Furthermore we de�ned two objects, U3 and V3, which will help us to reach a deeper
understanding of the symmetry properties of so(5).
Taking all this into account, one can see that we have eight ladder operators, two "real" weight
operators (X3, Y3) and two "auxiliary" weight operators (U3, V3). Each of the following sets
builds up a closed subalgebra equivalent to su(2),

{X±, X3}, {Y±, Y3}, {U±, U3}, {V±, V3}.

The question we want to answer is which quantum numbers are raised and which ones are
lowered, by acting with a certain operator. From the commutation relations we know that

[X3, Y3] = 0, (43)

13



consequently we can diagonalize both operators simultaneously. We denote the corresponding
state with quantum numbers λx and λy as

|Ψ〉 = |λx, λy〉 , (44)

such that

X3 |λx, λy〉 = λx |λx, λy〉 , Y3 |λx, λy〉 = λy |λx, λy〉 . (45)

This is our starting point. We already know how the operators {X±, Y±} act on this state from
the case of su(2), e.g., for X+ we have

[X3, X+] |λx, λy〉 = X+ |λx, λy〉
⇔ X3(X+ |λx, λy〉) = (λx + 1)(X+ |λx, λy〉),

[Y3, X+] |λx, λy〉 = 0 |λx, λy〉
⇔ Y3(X+ |λx, λy〉) = (λy)(X+ |λx, λy〉),

⇒ X+ |λx, λy〉 ∼ |λx + 1, λy〉 .

The same algorithm holds true for X−, Y+, Y− such that we obtain as expected

X+ |λx, λy〉 ∼ |λx + 1, λy〉 ,
X− |λx, λy〉 ∼ |λx − 1, λy〉 ,
Y+ |λx, λy〉 ∼ |λx, λy + 1〉 ,
Y− |λx, λy〉 ∼ |λx, λy − 1〉 .

In the same way one also calculates the actions of U+, U−, V+, V−. For example, in the case of
U+ one obtains

[X3, U+] |λx, λy〉 =
1

2
U+ |λx, λy〉 ,

[Y3, U+] |λx, λy〉 =
1

2
U+ |λx, λy〉 ,

=⇒ U+ |λx, λy〉 ∼ |λx +
1

2
, λy +

1

2
〉 .

We conclude that the actions of U+, U−, V+, V− are given by

U+ |λx, λy〉 ∼ |λx +
1

2
, λy +

1

2
〉 ,

U− |λx, λy〉 ∼ |λx −
1

2
, λy −

1

2
〉 ,

V+ |λx, λy〉 ∼ |λx +
1

2
, λy −

1

2
〉 ,

V− |λx, λy〉 ∼ |λx −
1

2
, λy +

1

2
〉 .

For completeness we also list the actions of U3 and V3 which follow by de�nition

U3 |λx, λy〉 = (λx + λy) |λx, λy〉 , V3 |λx, λy〉 = (λx − λy) |λx, λy〉 .

3.4 Graphical interpretation of the operators

As in �gure 2, we want to represent the actions of the ladder operators graphically. In order to
illustrate all ladder operators, the 10-dimensional multiplet {10} is convenient, since it is bigger
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and gives us more space to clearly arrange everything. Imagine now a state in the middle of the
multiplet such that |Ψ〉 ∼ |0, 0〉 (green dot). All other states in the multiplet can be generated
by acting on that state with the ladder operators we mentioned before. This also holds true for
any lower- or higher-dimensional multiplet and any other starting point in the multiplet. As in
the case of su(2), the state we obtain by acting with an operator on a boundary point, leading
out of the multiplet, gives zero.

|−1, 0〉

|− 1
2
, 1
2
〉

|0, 1〉

| 1
2
, 1
2
〉

|1, 0〉

| 1
2
,− 1

2
〉

|0,−1〉

|− 1
2
,− 1

2
〉

U+

U−

V−

V+

Y+

Y−

X+X−

Figure 7: (2,0) = {10} with ladder operators.

3.5 Properties of so(5)

The work we have done so far allows us to discuss symmetry properties of so(5). From the case
of su(2) we know that any multiplet is axial symmetric with respect to the origin: if |S〉 is an
available state so there is |−S〉 (See �gure 2). This is known as a Z2-symmetry.
The four weight operators X3, Y3, U3, V3, commute with each other, meaning that they can be
diagonalized simultaneously. Their corresponding su(2)-subalgebras

{X±, X3}, {Y±, Y3}, {U±, U3}, {V±, V3},

are closed. Hence we can impose four symmetry axes for an arbitrary so(5) multiplet:

Y−axis

X−axis

U−axis

V−axis

Figure 8: Symmetry axes for so(5).

Those symmetry axes are characteristic for the Lie algebra so(5). As a result, any multiplet
in so(5) has the shape of an octagon, which is characterized by its side lengths q along the
X,Y axes and p along the U, V axes. We have already encountered two examples obeying these
rules: The spinor representation (p, q) = (1, 0) = {4} in �gure 6 and the adjoint representation
(2, 0) = {10} in �gure 7. Here we show some non-trivial low-dimensional irreducible multiplets
of so(5).

15



1

1

1

1

(1, 0) = {4}

1

1

1

1 1

1

1

1

2

2

2

2

(1, 1) = {16}

Figure 9: Multiplets with non-trivial duality.
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(0, 1) = {5}

1

1

1

1

1

1

1

1
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(2, 0) = {10}

Figure 10: Multiplets with trivial duality.

The dimension of a multiplet, i.e., its total number of states, is determined by p and q and given
by (see [4])

D(p, q) =
1

6
(p+ 1)(q + 1)(p+ q + 2)(p+ 2q + 3), (46)

such that for a given p and q we have (being consistent with our previous notation)

(p, q) = {D(p, q)}. (47)

As already mentioned, a multiplet is completely characterized by p and q and not only by its
dimension, for instance

(2, 1) = (4, 0) = {35}. (48)

As a result we can �nd two sets of 35-dimensional matrices which obey the commutations rela-
tions for so(5). In order to distinguish the corresponding multiplets we denote

(2, 1) = {35}, (4, 0) = {35∗}. (49)

The same procedure also applies for all other degeneracies for D(p, q).

3.5.1 Multiplicities for so(5)

In contrast to the Lie algebra su(2), some states in an so(5) multiplet may be degenerate, i.e.,
there may be several states having the same eigenvalues λx,λy. The number of di�erent states
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for given λx,λy in a representation is called multiplicity. In su(2) all states have multiplicity one.
Starting from the highest weight state |λmax〉 (which has multiplicity one), there is only one way
to obtain all other states: by acting iteratively with the lowering operator S− (see �gure 2).
Consider the adjoint representation {10} given in �gure 10. Starting from the highest weight
state |1, 0〉 with multiplicity 1, one can see that there exist two independent ways of getting to
the point |0, 0〉.

|0, 0〉 ∼ X− |1, 0〉 ,
∼ (U−V−) |1, 0〉 ,

which results in two independent states with eigenvalues λx = 0, λy = 0. Using the way V−U−
doesn't give any new states since

(V−U−) |1, 0〉 = ([V−, U−] + U−V−) |1, 0〉 = (2X− + U−V−) |1, 0〉 .

We conclude that the state with eigenvalues λx = 0, λy = 0 is two-fold degenerated, i.e., it has
multiplicity 2. Unfortunately, there is no easy pattern of calculating these multiplicites for higher-
dimensional representations; the method to consider di�erent ways into the middle fails at higher-
dimensional multiplets. Let us consider an 81-dimensional representation (p, q) = (2, 2) = {81}
which results in the following multiplet:

1

1

1

1 1 1

1

1

1

1

1

111

1

1

2

2

3

2 2

3

2

2

3

22

3

4

4

4

4

4

4

4

4

5

Figure 11: The representation {81} in so(5).

One can see that the multiplicities for a given pair of quantum numbers |λx, λy〉 agrees with their
symmetry partners, i.e., if |λx, λy〉 has multiplicity m, so do all other points in the multiplet
that one gets by mirroring on the symmetry axes X,Y, U, V . The multiplicities on the boundary
are always 1, since they are highest weight states. The multiplicities in the inner part of the
multiplet increase (or stay the same). Taking a closer look, one sees that the multiplicities do not
follow any obvious pattern. For certain cases one �nds regularities but often they do not hold
true for higher-dimensional representations. In order to determine those multiplicities one can
use the so-called recursive Freudenthal-Formula (see[7], page 444). Although the formula of
Freudenthal is quite intuitive, it requires a lot more theory and, in addition, it is also tedious to
use by hand. However, the scheme described by Antoine and Speiser provides a tool to calculate
multiplicities in a rather easy way.
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4 Tensor product reduction

So far we have encountered Lie algebras, representations, and their multiplets. Now we want to
discuss the concept of coupling two representations, respectively their multiplets. An algebraic
variant of reducing tensor products is given by the so-called girdle-method ([6]). For the algebras
so(n), su(n) and sp(n) there are useful schemes based on Young-tableaux ([7]). Since these
methods are tedious and not very intuitive, we will not discuss them here. Instead, we discuss a
graphical tensor product reduction scheme discussed by Greiner (also ([7])) and its disadvantages
compared to the reduction scheme described by Antoine and Speiser. In order to keep it simple
and evident, we neglect strict mathematical descriptions and give graphical interpretations of
these methods.
In the introduction we coupled two su(2) multiplets: {2} and {5} such that

{2} ⊗ {5} = {4} ⊕ {6}.

In this particular case one could use the well-known coupling rules which are used to couple
angular momenta. The tensor product of two representations with spin S1 and spin S2 results
in all representations with total spin between |S1 − S2| and S1 + S2:

{2S1 + 1} ⊗ {2S2 + 1} = {2|S1 − S2|+ 1} ⊕ · · · ⊕ {2(S1 + S2) + 1}.

This coupling rule for su(2) is somewhat arbitrary and seems to appear from nowhere. In order
to understand the coupling of two representations in so(5) we need to rethink this problem in a
more abstract way.

4.1 Interpretation of coupling two representations

Coupling two representations {2} and {5} in su(2) means that we couple every state of {5} with
every state of {2} (or vice-versa). More precisely we take every state of {5} = {|−2〉 , |−1〉 , |0〉 , |1〉 , |2〉}
and "shift" them by the states of {2} = {|− 1

2 〉 , |
1
2 〉}. This procedure can be represented graph-

ically by superimposing the multiplet {2} one every state of the multiplet {5}, such that we
obtain all possible states in the direct product. The resulting multiplet can be decomposed into
two irreducible ones.

1 2 2 2 2 1

{5} ⊗ {2}

=

{6}

⊕

{4}

Figure 12: Coupling {5} with {2}

This method can be described in the following general way: Given two multiplets we want to
couple, we can superimpose the second multiplet on every state of the �rst one. The resulting
multiplet represents all possible obtainable states in the direct product and decomposes into a
direct sum of irreducible multiplets.
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4.2 Coupling two representations in so(5)

This concept of calculating tensor products also generalizes to rank 2 tensor products. Since we
are working with so(5), we want to do our �rst tensor product reduction using this particular
method: So let us couple the two fundamental non-trivial representations {4} and {5} of so(5),
by superimposing {4} on every state of {5}7.

1

1

1

1

(1, 0) = {4}

⊗
1

1

1

1

1

(0, 1) = {5}

=

1

1

3

1

1

3

1

1

3

3
1

1

=
1

1

1

1

(1, 0) = {4}

⊕

1

1

1

1

1

1

1

1

2

2

2

2

(1, 1) = {16}

Figure 13: Coupling: {4} ⊗ {5} = {16} ⊕ {4}.

We �nally performed our �rst tensor product reduction of two irreducible multiplets with the
result that

{4} ⊗ {5} = {4} ⊕ {16}.

Using this example we have just seen that the calculation is quite intuitive and can be carried
out with simple graphical considerations. However, already in this case the calculation was
cumbersome since we had to make lots of drawing; assume we wanted to calculate {10}⊗{10000}
(see equation (3)). One can easily see that the e�ort to calculate this by hand is enormous. A
computer on the other hand, could do these calculations quicker, nevertheless the working time
for the computer increases drastically for higher-dimensional multiplets.
At this point the so-called landscape introduced by Antoine and Speiser comes into play. The
landscape allows us to calculate tensor products using simple additions and subtractions.

7Note: we are coupling the ones in �gure 9 and �gure 10.
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5 Antoine-Speiser tensor product reduction scheme

As discussed by Antoine and Speiser ([3, 4]), the multiplet of a rank 2 Lie algebra can be
positioned in a two-dimensional landscape. This landscape allows us to calculate multiplicities
and tensor products of irreducible representations.

5.1 Landscape of su(2)

First we want to work out the landscape for su(2). We know that su(2) is a rank 1 Lie algebra,
so the landscape is one-dimensional, i.e., it extends along one line. Imposing that all irreducible
representations of su(2) need to be situated on this line, it is quite intuitive to see how the
landscape should look like.

−1−2−3−4−5−6 1 2 3 4 5 6

11

Figure 14: landscape for su(2), {2} (red) superimposed on {5}.

The landscape of su(2) is divided into a positive sector on the right and a negative sector on
the left. It consists of two sublattices one for the integer (black dots) and one for the half-
integer (green dots) representations, due to the center of the covering group (see subsection
2.8). Coupling once again the two representations {5} and {2} in su(2) using the landscape
means that we superimpose {2} on the dot in the landscape which belongs to the irreducible
representation of {5}. As a result we immediately obtain our well-known result

{2} ⊗ {5} = {4} ⊕ {6}.

Of course one could also superimpose {5} on {2}. Naturally we get the same result

{2} ⊗ {5} = 	{2} ⊕ {2} ⊕ {4} ⊕ {6} = {4} ⊕ {6}.

It is quite evident that one can save time by superimposing the lower-dimensional multiplet on
the higher-dimensional one. One can also see that the tensor product reduction in su(2) is rather
simple and intuitive: What we basically did, is to apply the coupling rules for angular momenta
graphically. However, given the simple algebraic coupling rules for angular momenta, su(2) does
not really require a graphical tensor product reduction method.

5.2 Landscape of so(4)

The concept of the landscape develops its full strength for rank 2 Lie algebras, such that we �rst
want to consider the simple case Lie Algebra so(4) = su(2)x⊕su(2)y. Since so(4) is just the sum
of two independently acting su(2) subalgebras all states are non-degenerate (i.e. have multiplicity
one). The landscape can be built by using two times the already known su(2)-landscape.
One can easily show, that each multiplet in so(4) has the shape of a rectangle, determined by its
height h and its side length w. In this particular case it is vital to classify the multiplets in terms
of their su(2) subalgebras. For instance the resulting multiplet from the vector representation
(see �gure 5) can be written as

{4} = {2, 2},

which takes into account that {4} is a doublet with respect to su(2)x and to su(2)y. Due to
the symmetry properties of so(4) we have degeneracies with respect to the dimension of the
multiplets. For instance:

{2, 3} = {6}, {3, 2} = {6∗}.

The multiplet {2, 3} is a doublet with respect to su(2)x and a triplet with respect to su(2)y.
Hence, this representation has trivial duality with respect to su(2)y. For the case of {3, 2} the
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inverse holds true.
This fact is also taken into account in the landscape. Each of the points in the landscape
represents an irreducible representation of so(4). As we stated in subsection 2.8, so(4) is a
special case: we distinguish between 4 di�erent types of representations depending on the duality
with respect to the subalgebras su(2)x and su(2)y. The black dots are representations of trivial
duality with respect to both subalgebras. The blue dots are representations with trivial duality
with respect to su(2)x and non-trivial with respect to su(2)y, purple dots behave vice-versa.
The green dots are representations of non-trivial duality with respect to both su(2) subalgebras.
As a result {3, 2} is represented in the landscape by a blue dot, {2, 3} by a purple one and the
vector representation {4} is denoted by a green dot.
Let us now couple two representations of so(4) using the landscape, for example {4} and {6∗}.
We do this, as in the case of su(2), by superimposing the multiplet of {6∗} on the representation
in the landscape, which belongs to {4}.
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Figure 15: Central part of the landscape so(4), {6∗} superimposed on {4}.

Using the graphical vector method described in 4.2 would give us a large amount of work; using
the landscape we easily get the result

{4} ⊗ {6∗} = {12∗} ⊕ {6} ⊕ {4∗} ⊕ {2∗}.
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5.3 Landscape of so(5)

Due to the properties of so(5), its landscape has a unique form that distinguishes it from other
rank 2 Lie algebras. Up to now we constructed landscapes just by using multiples of su(2)-
landscapes. However, for so(5) the situation is somewhat more complicated: since su(2)x ⊕
su(2)y = so(4) ⊂ so(5) we still have two su(2) subalgebras which could be used in order to
classify multiplets. Due to the interaction between those su(2) algebras, namely represented
by the ladder operators U±, V±, the subalgebras do not act independently and so we do have
to take into account multiplicities. At this point we make use of the so(5)-landscape provided
by Antoine and Speiser ([3, 4]) and do not derive it. Here we provide the central sector of the
landscape, a bigger one can be found in the appendix (8.2).

−

+

+

−

+

− +

−

1

4

10

1

5

16

4

5

14

10

16

14

1

4

10

1

5

16

4

5

14

10

16

14

1

4

10

1

5

16

4

5

14

10

16

14

1

4

10

1

5

16

4

5

14

10

16

14

Figure 16: Central part of the landscape of so(5).

The landscape is divided into eight segments with alternating sign. Any dot in the landscape
represents an irreducible representation of so(5). The representations of trivial and non-trivial
dualities are denoted by di�erent colors: The ones with trivial duality are black, the ones with
non-trivial duality are green. The Cartesian co-ordinates of any representation (p, q) = {D(p, q)}
in the landscape are given by

x = p+ q + 2, y = q + 1, (50)

such that the dimension reads

D(x, y) =
1

6
(p+ 1)(q + 1)(p+ q + 2)(p+ 2q + 3) =

1

6
xy(x2 − y2). (51)

As in so(4), we have cases where the dimension is degenerate. In this case the point in the
landscape is denoted with an additional "∗", e.g., the representation {35∗} in the landscape
is also denoted with the additional "∗". It is worth noticing that the landscape contains all
symmetry properties of so(5), as discussed in 3.5.
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5.4 Coupling two representations in so(5)

Since we are given the landscape by J. P. Antoine and D. Speiser, we are prepared to discuss the
tensor product reduction scheme. Given the landscape of so(5) we can couple any two multiplets
like we did in the case of so(4), described in subsection 5.2. However, in the case of so(4) all
states had multiplicity one: this does not hold true for so(5). First of all we need an algorithm
for calculating the multiplicities for a given multiplet, using the so(5)-landscape.

5.4.1 Multiplicities for so(5) multiplets

The multiplicities for a given multiplet only depend on (p, q): The side-length along the diagonal
and the side-length along the horizontal. In order to determine the multiplicities for a given
multiplet (p, q) = {D}, we couple {D} with the singlet (0, 0) = {1} in the landscape, such that

{D} ⊗ {1} = {D}. (52)

It is easy to see that this equation holds true, if we remember the physical interpretation of
coupling two multiplets (see subsection 3.4). We superimpose {D} on the singlet {1} and see
that a number of representations in the landscape are covered by states of the multiplet. The
contribution we want (i.e. the point in the landscape which corresponds to the multiplet {D}) is
situated in the upper-right boundary of the multiplet, in the positive sector, and nowhere else.
As a result this state has multiplicity one, which coincides with the fact that it is a highest weight
state. All other contributions (i.e. all other points covered by the multiplet) need to sum up to
zero. This is the condition needed such that equation (52) holds true. Since we know one state
has multiplicity 1, all symmetry partners, i.e., all states one gets by mirroring on the X,Y, U, V
axes (see subsection 3.5), also have multiplicity 1. Using the 8-fold symmetry and the fact that
all other contributions (except for the one given by {D}) need to sum up to zero, one can easily
determine all multiplicities recursively, starting from the point which covers (p, q) = {D}.
Let us calculate the multiplicites of (1, 1) = {16}; a representation we already met in �gure 9,
and let us assume we do not know the multiplicites yet. Using the described algorithm we get:
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Figure 17: Calculating multiplicities for (1, 1) = {16}.
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We see that we get the following contributions such that

{16} ⊗ {1} = a{16}+ (d− b− c){4} !
= {16}. (53)

Symmetry-considerations give us a = b = c = 1 and d = 2.

5.4.2 Coupling two representations in so(5)

At this point we have all the tools needed in order to perform our �rst tensor product reduc-
tion using the landscape. In subsection 4.2 we coupled the 4-dimensional spinor representation
with the 5-dimensional vector representation using an intuitive graphical method described in
Greiner's "Symmetries" ([7]). Let us now check if

{4} ⊗ {5} = {4} ⊕ {16}

is also reproduced using the Antoine and Speiser reduction method. First we have to determine
the multiplicities by superimposing {4} and {5} on the singlet {1} in the landscape. It can
easily be seen that in both representations for every pair of quantum numbers λx, λy we have
multiplicity 1, as we already stated indirectly in �gure 9 and �gure 10. Since we have determined
the multiplicities of both representations, we can �nally couple them by superimposing the
multiplet {4} on the point in the landscape which belongs to {5}. Reading o� the covered
representation in the landscape leads to the correct result we just mentioned before.
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Figure 18: Coupling {4} ⊗ {5} in so(5).

We immediately see that this method using the landscape is much more e�cient than using the
graphical vector-method described by Greiner. Of course, one can couple any desired multiplets;
even very high-dimensional ones are an easy task now. For example, one could now easily
calculate {10000} ⊗ {10} by just superimposing {10} on the landscape and reading o� the 10
representations which are covered by the multiplet.

24



5.5 Final comment

As we have seen so far, calculating tensor products can be a very tedious and time-consuming
problem. Having appropriate tools, in order to perform these calculations, is very important and
time-saving. The challenging task is to write a program which "understands" how the tensor
product reduction scheme works and also executes it. In this particular case the Antoine and
Speiser tensor product reduction scheme for so(5) was implemented into a Java-program which
we want to present now in a general manner, without going into all �ne details.
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6 Antoine and Speiser-scheme implemented into a Java-
program

6.1 Introduction to the Java-language

As we stated at the beginning of this thesis the program was written in Java-language. Here
we provide basic informations on how a generic Java-program works, before considering the
written program itself. Java is a so-called object-oriented language, meaning that objects are the
fundamental entities in a Java-program. A Java-object often represents a real entity needed in
order to solve a problem. An object is de�ned by a class. A class is the model or blueprint from
which the object is created. Multiple objects can be created from one class de�nition. Inside the
class one de�nes states, potential attributes and behaviours an object can have. By state we mean
"state of being" - fundamental characteristics that de�ne the object. An object's attributes are
the values an object stores internally, e.g., height, color and so on.Methods describe the potential
behaviour of an object; they are a group of programming statements given a name. When a
method is invoked, its statements are executed.
As an example one could think of a class called "car". The car is de�ned by its "state": A car
has four wheels, an engine and so on. Attributes could be the brand and horsepower. A method
we want to execute having an car-object would be "drive to university".
Having all this, we can de�ne a car-object: Let us call it "Tim's car", which has all characteristics
a car needs. We de�ne the car to be a Mercedes and want it to have 150 horsepower. Having
that object de�ned, we can invoke the method called "drive to university": and then drive to
university.
Since the structure of the program is not complicated in the sense that it requires the whole
repertoire of all Java-functions, the previously presented notions are all we need in order to
understand the program.

Graphical overview of the program

At this point we have all the terms needed in order to illustrate the program in a general way.
First of all we give a graphical overview before considering the main parts of the program.

Figure 19: Graphical overview program.
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6.2 Structure of the program

As already mentioned the program is divided into classes and their corresponding objects. The
graphical overview shows us the frame we see, when executing the program. In order to under-
stand what happens behind the window, we also want to give an overview of the di�erent classes
and brie�y explain what they do. For the sake of clearness we are sometimes going to denote
the object with the same name as the class, in the case where multiple de�nitions would just
cause confusion.

Main Class

Left Panel

Picture Multiplet Interface

Landscape

Landscape-Point

Multiplet-Point

Figure 20: Overview of the di�erent classes.

6.2.1 Main Class

The main class is the superior class which contains the execution statement. It has the following
properties:

• Contains the execution command.

• Sets up the frame (creates the Graphical User Interface GUI).

• De�nes an object Left Panel from the class Left Panel.

• De�nes an object Landscape from the class Landscape.

• Sorts both objects in the frame as in �gure 19.

6.2.2 Left Panel

The Left Panel is a container which describes the left-hand side of the frame. The following
tasks are executed:

• De�nes an object Interface from the class Interface.

• De�nes an object Picture from the class Picture.

6.2.3 Landscape

Before taking a look at the main algorithm, we want to give some details about the object Land-
scape. The Landscape was the �rst object programmed in this problem statement, such that it
also contains features which work independently from all other components of the program. The
Landscape de�nes four two-dimensional arrays, for each quadrant of the so(5)-landscape. Each
entry of these arrays is an object from the class Landscape-Point, which denotes a representation
in the Landscape. Each representation is printed into the landscape. Representations which are
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degenerate, due to the dimension {D(p, q)} are denoted in the landscape with an additional "*".
Furthermore the landscape has the following two features which work independently from the
rest of the program:

• "Drag and Drop"- function, such that one can move inside the landscape.

• If needed one can also "delete" representations by pressing the right mouse button on
the representation in the landscape. Pressing once again results in the representation to
re-appear.

The command in order to execute the Antoine and Speiser tensor product reduction scheme
comes from the object Interface. Although the landscape could work independently for itself,
it also waits until someone gives a User-Input in the interface and presses the "PLOT"-button.
Having an input the landscape superimposes the desired multiplet in the landscape, reads o�
which points are covered and sends the information back to the interface. We are going to specify
this idea, when considering the interaction between the objects Interface and Landscape.

6.3 Interface and Picture

The interface is the "heart" of the program: it creates multiplets, based on the input of the user
and calculates multiplicities by creating a landscape which runs in the background. This "imag-
inary" landscape calculates the multiplicities by executing the algorithm given in subsubsection
5.4.1. Furthermore the interface sets up the interaction between itself and the "real" landscape
on the right hand side of the frame. We want to summarize the Interface's actions with the
following list of statements it executes:

• Creates the Graphical User Interface (sets up buttons, labels, text �elds and so on), con-
nects those buttons with actions that are executed.

• Creates a set of objects from the class Landscape-Point, i.e., it creates an array, where
all the representations of the landscape are listed (including their dimension, co-ordinates,
degeneracies etc.). One can think of a complete landscape running in the background.

• When pressing "OK" the interface constructs two 2-dimensional arrays, whose elements
belong to the classMultiplet-Point, depending on the User-Input. The algorithm, by which
those multiplets are completely characterized, is described in subsection 6.4.

• The �nished multiplets are handed over to the object Picture, where one of the multi-
plets is displayed, depending on the selected Radio-Button (Weight-Diagram 1 or Weight
Diagram 2 ).

• If "PLOT" is pressed the program executes the same algorithm as when "OK" is pressed.
Additionally the program superimposes the desired multiplet on the landscape and calcu-
lates its contributions.

• When pressing "CLEAR", all settings are reset.

6.4 Construction algorithm for a multiplet

Once the user gives in the side-lengths for both multiplets and presses "OK" (or "PLOT") the
program determines the multiplets based on a tedious algorithm. The creation of multiplets -
especially determing the multiplicities - is quite complicated, such that we want to give an idea
of the algorithm used. In order to create a multiplet only two inputs are needed: the side-length
along the diagonal p and the side-length along the horizontal q. So let us assume we get the
input for the �rst multiplet: p1 and q1. The interface executes the following algorithm for the
�rst multiplet8:

8For the second multiplet the algorithm is the same. Since we perform the algorithm for the �rst multiplet,
every variable has an additional "1" at the end.
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1. We de�ne the integers

numshell1 = (int)(
p1 + 2q1

2
) + 1,

maxnum1 = (int)4(p1 + q1).

The integer numshell1 determines the number of "shells" a multiplet has, and is rounded
down if needed. The number maxnum1 determines the number of multiplet points one
can �nd in the outer shell of the multiplet.
If p1 = q1 = 0, the program simply de�nes numshell1 = maxnum1 = 1, such that we get
the singlet {1}.

2. A two-dimensional array, which we call multiplet1, is created. The number of entries is
based on the two previously de�ned variables:
multiplet1 = muliplet1[numshell1][maxnum1].

3. Each entry of this array is an object from the class Multiplet-Point, which has attributes
like position and multiplicity.

4. In order to hand in co-ordinates to every point of the multiplet (i.e. to every entry of the
array), we start by the point in the lower-left part of the multiplet. The position of this
particular point is de�ned to be:

x = −(int)(
lq
2

)(p1 + q1),

y = (int)(
lq
2

)q1,

where lq is the standard parameter of length. Based on p1 and q1 the program calculates
the positions of the outer shell clockwise. When the starting point is reached, the algorithm
proceeds to the inner part of the shell structure and so on.

At this point we want to give an example: Consider the multiplet based on p1 = 1, q1 = 1.
Simple calculations yield

numshell1 = d2.5e = 2, maxnum1 = 8.

The array multiplet1[2][8] is created and any entry in the array is associated with a point of the
multiplet:

multiplet[1][7]

multiplet[1][0]

(starting point)

multiplet[1][1]

multiplet[1][2] multiplet[1][3]

multiplet[1][4]

multiplet[1][5]

multiplet[1][6]

multiplet[0][0]

multiplet[0][1]

multiplet[0][2]

multiplet[0][3]

Figure 21: Generating the multiplet (1, 1) = {16}.

Having calculated the co-ordinates for every point of the multiplet, we need to calculate the
multiplicities.

5. In order to calculate multiplicities we use the previously mentioned class Landscape-Point.
Analogously, as for the landscape, we de�ne four two-dimensional arrays where each entry
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denotes a representation in the landscape, with its co-ordinates. The co-ordinates of this
"imaginary" landscape are now shifted in such a way, that the singlet {1}, in the positive
sector on the right, is shifted to the middle. The program superimposes the given multiplet
on the representation which belongs to {1} and calculates the co-ordinates which are
covered by the multiplet. As a result, some multiplet-points are given an internal value
others not.
As a side note we also want to discuss another interesting property of the program, namely
the way how the program calculates the dimension {D(p, q)} of a multiplet.
Superimposing the multiplet with the singlet, one can uniquely determine the dimension of
the multiplet. Using the dimension formula would not take into account the degeneracies
of the dimensions. However, the landscape does take degeneracies into account (since it
was programmed that way). The 2(p1 + q1)' entry of the �rst shell (respectively the entry
multiplet1[numshell1−1][2(p1+q1)]) always covers the correct dimension of the multiplet
(see �gure 17).

6. Next the program executes a method which divides all points of the multiplet into groups
of symmetry partners. These symmetry partners are given the same value of m: the
multiplicity. The sets of symmetry partners are then enumerated: m1,m2, . . . .

7. As a result we obtain a set of equations such that equation (52) needs to be ful�lled. These
equations are solved by an external program called Jama ([8]), by writing these equations
into matrix form and inverting it.

8. Finally the calculated multiplicities are given back to the symmetry partners and therefore
to the multiplet-points. We obtain a completely characterized multiplet.

Let us return to our example. As in subsection 5.4.1, the program splits the set of multiplet-
points into groups of symmetry partners: here speci�cally denoted by di�erent colours. In
addition to this, some entries of multiplet1 are given a value: namely the value obtained by
superimposing the multiplet with the singlet. The di�erent groups of symmetry partners are
given an index: As a result we get a set of equations which is put into a matrix

-4

16

4

-4

Nr. 1 (m1)

Nr. 2 (m2)

Figure 22: (1, 1) = {16}, with the contributions we get by coupling {16} ⊗ {1}.

1 ·m1 = 1,

−2 ·m1 + 1 ·m2 = 0,

⇔(
1 0
−2 1

)(
m1

m2

)
=

(
1
0

)
.

The program Jama solves this matrix equation and gives us the well-known result: m1 = 1,
m2 = 2.
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6.5 Interaction between the interface and the landscape

Up to now we didn't interact with the landscape on the right-hand side of the frame and basically
just described the Left Panel of the program. However, when pressing the "PLOT"-button
interaction between the object Interface and Landscape is invoked. The constructed multiplets
in subsection 6.4 are handed over to the "real" landscape. Depending on the radio-button
selected (Weight-Diagram 1 or Weight-Diagram 2 ) either the �rst multiplet is superimposed at
the landscape-point of the second multiplet, or vice-versa.
Let us assume we superimpose the �rst multiplet on the point in the landscape of the second one.
First the landscape is shifted until the dot for the second multiplet is centered. Then the �rst
multiplet is superimposed and the object Landscape calculates all the intersections between
the Landscape-Points and the Multiplet-Points.
The landscape also calculates all contributions, summarizes and sorts them. The result is sent
back to the interface where it is printed in a JScrollPanel (A text-�eld with scrolling option).
As already mentioned the "CLEAR"-button of the interface resets all settings and puts them
back into default-mode. The multiplets in the object Picture and Landscape disappear.
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7 Conclusion and outlook

The aim of this thesis was to get an overlook about Lie algebras -especially about so(5)-, and to
implement the tensor product reduction scheme, described by J. P. Antoine and D. Speiser. We
started with the concept of a Lie group and continued by considering the tangential space of the
group, where we obtained the generators of the corresponding Lie algebra. As the commutations
relations were �xed, we started considering representations, multiplets and their multiplicities.
Having the concept of multiplets we coupled several multiplets by using a cumbersome graphical
vector method. Then we introduced the landscape and presented a much more economical way
of calculating tensor products, namely the tensor product reduction method by Antoine and
Speiser. Finally we gave a brief overlook, about the Java-program, where this particular method
has been implemented.
The geometry of Lie algebras is very interesting and important in order to describe symmetries
in nature, but it is also worth mentioning the beauty of such objects.
We conclude our discussion by mentioning that in this thesis we only considered a special type
of Lie algebras, namely rank 1 and rank 2 Lie algebras. One can immediately imagine that there
could be some sort of "three-dimensional landscape" where all representations of a given rank 3
Lie algebras live9.
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8 Appendix

8.1 Appendix A: Commutation relations primitive basis

Here we list the commutation relations for the generic set of generators of so(5).

[Xi, Xj ] = iεijkX
k [Xi, Y j ] = 0 [Y i, Y j ] = iεijkY

k

[X1,K1] =
i

2
K4, [X2,K1] = − i

2
K3, [X3,K1] =

i

2
K2,

[X1,K2] =
i

2
K3, [X2,K2] =

i

2
K4, [X3,K2] = − i

2
K1,

[X1,K3] = − i
2
K2, [X2,K3] =

i

2
K2, [X3,K3] =

i

2
K4,

[X1,K4] = − i
2
K1, [X2,K4] = − i

2
K1, [X3,K4] = − i

2
K3,

[Y 1,K1] = − i
2
K4, [Y 2,K1] = − i

2
K3, [Y 3,K1] =

i

2
K2,

[Y 1,K2] =
i

2
K3, [Y 2,K2] = − i

2
K4, [Y 3,K2] = − i

2
K1,

[Y 1,K3] = − i
2
K2, [Y 2,K3] =

i

2
K1, [Y 3,K3] = − i

2
K4,

[Y 1,K4] =
i

2
K1, [Y 2,K4] =

i

2
K2, [Y 3,K4] =

i

2
K3,

[K1,K2] = i(X3 + Y 3), [K1,K3] = −i(X2 + Y 2), [K1,K4] = i(X1 − Y 1),

[K2,K3] = i(X1 + Y 1), [K2,K4] = i(X2 − Y 2), [K3,K4] = i(X3 − Y 3).
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8.2 Appendix B: Landscape for so(5)
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Figure 23: Landscape for so(5).

34



References

[1] E. Demler, W. Hanke, S.-C. Zhang, SO(5) Theory of Antiferromagnetism and Superconduc-
tivity, Rev. Mod. Phys. 76 (2004), 909.

[2] A. Bilal, J. P. Derendinger, K. Sfetsos, (Weak) G2 Holonomy from Self-duality, Flux and
Supersymmetry, Nucl. Phys. B628 (2002), 112.

[3] J. P. Antoine and D. Speiser, Characters of Irreducible Representations of the Simple Groups.
II. Application to Classical Groups, J. Math. Phys. 5 (1964), 1560.

[4] J. P. Antoine and D. Speiser, Characters of Irreducible Representations of the Simple Groups.
I. General Theory J. Math. Phys. 5 (1964), 1226.

[5] M. Böhm, Lie-Gruppen und Lie-Algebren in der Physik, Springer Verlag Berlin (2011).

[6] R.E. Behrends, J. Dreitlein, C. Fronsdal and W.Lee, Simple Groups and Strong Interaction
Symmetries, RevModPhys. 34 (1962), 584.

[7] W. Greiner and B. Müller, Quantum Mechnics, Symmetries, Springer Verlag Berlin (1989).

[8] J. Hicklin, C. Moler, P. Webb, JAMA:
http://math.nist.gov/javanumerics/jama/ [27.06.2016].

35

http://math.nist.gov/javanumerics/jama/

	Introduction
	Structure and aim of this thesis

	Group theory
	Groups
	The Lie Group SU(2)

	Lie algebras
	Cartan-Weyl basis
	Cartan-Weyl basis for su(2)

	Representation
	Comment on multiplets
	Trivial and non-trivial duality
	The Lie Algebra so(4)
	Universal covering group

	Group theory of so(5)
	Spinor representation
	Cartan-Weyl basis
	Action of the operators
	Graphical interpretation of the operators
	Properties of so(5)
	Multiplicities for so(5)


	Tensor product reduction
	Interpretation of coupling two representations
	Coupling two representations in so(5)

	Antoine-Speiser tensor product reduction scheme
	Landscape of su(2)
	Landscape of so(4)
	Landscape of so(5)
	Coupling two representations in so(5)
	Multiplicities for so(5) multiplets
	Coupling two representations in so(5)

	Final comment

	Antoine and Speiser-scheme implemented into a Java-program
	Introduction to the Java-language
	Structure of the program
	Main Class
	Left Panel
	Landscape

	Interface and Picture
	Construction algorithm for a multiplet
	Interaction between the interface and the landscape

	Conclusion and outlook
	Acknowledgement

	Appendix
	Appendix A: Commutation relations primitive basis
	Appendix B: Landscape for so(5)


